A. E. VAN VOGT AND
THE WORLD OF NULL-A

WILLIAM HENRY SHARP*

“He felt a keen excitement attracting vibrant minds and
turning them to the pursuit of a higher human purpose.”

If A.E. VAN VOGT had written a story of his own life, he would perhaps have
started with this line. In a sense, it could very well have served as his epi-
taph. Van Vogt spent much of his life as a professional science fiction writer,
but he also had a number of other passionate interests, including general se-
manitics. He wrote several novels that used general semantics principles to arm
his protagonists in their struggle against chaos, barbarity, and tyranny. Many
IGS members, including myself, were first attracted to general semantics through
those novels.

Van Vogt excites my interest not only as a science fiction writer but also as
a man of ideas and of greater importance, I believe, as an artist who mobilized
and directed his readers’ interest and emotions, and stirred the unspeakable
level with consummate purposefulness. When I encounter writers of such char-
ismatic appeal, in any field, I often become as interested in them and their lives
as I do in their work.

* William Sharp, a veteran IT Project Manager, has spent a lifetime investigating the impact of
technology on society and organizations, and developing adaptive responses to social change
and complexity. He has employed the concepts general semantics in a wide variety of settings.
Semi-retired, he writes and conducts research into human potentialities. This article is dedi-
cated in memory of the late and noble Leanore Goodenow who placed a second edition copy of
Science and Sanity in my hands many years ago. She attended Korzybski’s third Congress in
Denver and gifted me with her personal copy as “one who might understand it.”
Using Korzybski’s term, Van Vogt dismissed most biographies as “elementalism,” or “a sketchy life history.” He left mere fragments of his own life and method, mostly his 1975 autobiographical *Reflections of A.E. van Vogt* and a handful of interviews that followed. From the resources available, one can describe van Vogt as a writer who thoughtfully crafted his emotional impact on his readers and acquainted them with his principles and agenda. In that regard I found that van Vogt approached life systematically and methodically, rather than instinctively or spontaneously. Indeed, he apparently crafted his own life as carefully as he did his stories. Van Vogt used his powers to not only entertain but at the same time to convey a philosophy of purposeful human evolution. He built stories around these and other principles of life that he held dear. His work peaked during the golden age of science fiction (centering on John Campbell), which also gave rise to other such stars as Heinlein, Asimov, and Clarke, and like them, his writing shaped visions of human evolutionary potential through fictionalized science.

The Evolution of a Writer

Alfred Elton van Vogt was born on April 26, 1912, on his grandfather’s farm in Canada to a Dutch speaking family. His father practiced law, and as his career developed the family moved in a series of steps to Winnipeg, then a city of 250,000. Van Vogt was shy and withdrawn by nature, and these dislocations seemed to have troubled him. He fell behind in school and had to repeat a grade. When the stock market crash made it impossible for Alfred to attend college, he withdrew to his room and read for six months — fiction, history, psychology, and science. In 1931, he obtained a temporary job as a census bureau statistician. Curiously, census statistics fit with his emerging holistic view of society and led to the idea of an intelligent computer system far beyond the conventional thinking of the day. (1) He also picked up an idea, from a Scottish-Canadian friend, that the Scots, not the British, actually ruled the empire. (2) From this came the idea of a small, well-educated, behind-the-scenes cabal of social leaders.

About this time, van Vogt began developing his writing method. At age 20, he sold his first confessional-type story to *True Stories*. He also wrote plays for Canadian radio, and articles for trade journals, newspapers, etc. In 1938, he picked up a copy of *Astounding* and found a story that fired his imagination. (3) The story told of men in an Arctic outpost who maintained their composure in the face of overwhelming and deadly odds and joined together to defeat an alien adversary far more capable than any of them individually. This planted the seeds of van Vogt’s fundamental philosophy of life: For humankind to suc-
ceed in the universe, they would have to overcome ego and work selflessly and cooperatively to benefit the whole of human society — no “Lone Ranger” superheroes need apply. Van Vogt began to dwell on the nature and behavior of the “superior” person, one able to rise above the senseless mass mentality and marshal the cooperation of others to overcome obstacles to progress or threats to survival.

Van Vogt sent an outline of a story to John Campbell, the editor of *Astounding*, who, characteristically, encouraged him. “Black Destroyer” appeared in the epic and historical July 1939 issue. The piece remains a classic, very readable example of the genre to this day.

A few months later Hitler invaded Poland and the British Empire went to war. Van Vogt was rejected for military service because of poor eyesight, so he took a job as a government clerk — the “right thing to do” — to support the war effort at a low and fixed rate of pay. To supplement his government salary, he continued to write for Campbell. Van Vogt earned $835 for the “Slan” serial in 1940, almost as much as his annual government salary. As the war progressed, van Vogt found less time to write, so when Campbell offered him a lucrative and demanding contract in September 1941, van Vogt quit his government job and moved to Los Angeles to pursue his career as a professional writer.

John Campbell and the Golden Age of Science Fiction

John W. Campbell played a tremendously influential role in the transformation of the science fiction genre. The son of an engineer, Campbell read voraciously and enjoyed science fiction. He began writing science fiction while a student at MIT (he later graduated from Duke) and rather quickly became successful at it. During the Depression he worked a variety of jobs up to 1937, when he was offered the job as editor of *Astounding Stories*. He knew nothing about being an editor but characteristically applied himself to learning and became one of the industry’s most successful leaders. His readers were bright, educated, and curious, and he carefully chose writers who would attract and hold them. These included van Vogt, Robert Heinlein, Isaac Asimov, Clifford Simak, L. Ron Hubbard, Lester del Ray, and L. Sprague de Camp, among many others. He set about to shape the magazine in his own vision, mobilized his stable of writers (mostly young, new to the game and loyal to him), changed the name to *Astounding Science Fiction*, adopted the policy of presenting science in a plausible, fictionalized form, and set off to completely dominate the genre for a decade. He had a prodigious range of knowledge and a strong influence on the young writers he found and nurtured. He worked for two years to develop a
style and in that July 1939 issue, in which van Vogt first appeared, it came to fruition. Campbell retained the helm of Astounding until his death in 1970.

Nineteen thirty-nine was an incredible year. Already massive forces of change were exerting a tremendous influence in the world, not only in the spheres of economics and politics, but in science and industry as well. That was the year of the New York World’s Fair and its fabulous vision of the World of Tomorrow. The year before, Korzybski had launched his Institute, and German scientists had split the atom. PanAm’s great flying boats had just begun to cross the Pacific on a regular schedule. Radio established a new information medium that entertained, informed, and promoted social cohesion during the Depression and the war. The telephone had become commonplace. Good highways were built all over the country and reliable automobiles began to fill them. Railroad locomotion grew into vast networks of rails with long trains to haul people and material rapidly from coast to coast. A huge aircraft industry buildup was underway in anticipation of war. Then the war started in Europe. Science fiction flourished during the war, especially from the pens of writers like van Vogt, who saw and sought a positive human future. His heroes now fought not only alien beasts, but also home-grown tyrannical superpowers, and they always won the battles.

Most of Campbell’s writers, like Campbell himself, were scientific idealists. Their characters were realists, at the same time “macho” and creative. Campbell had no interest in fantasy. He wanted to plausibly extrapolate the potential of science and society. Humanistic ideas guided those extrapolations as civilizations were saved and new societies founded. Science fiction writers sent their characters to patrol the stars while Goddard and von Braun launched overgrown skyrockets. They designed thinking computers (while retaining vacuum tubes, slide rules, and typewriters with carbon paper). They developed applications of controlled atomic energy before Einstein wrote his fateful letter to Roosevelt encouraging the development of an uncontrolled weapon of mass destruction. (4) This was an exercise of “What if?” They pursued a purposeful human destiny. They believed, like Korzybski did, that men and women could be educated to control change, to build vast technologies and just societies, to be fruitful and fill the galaxy. Some of them had been writing for 30 years before Gene Roddenberry even conceived the idea to “Go where no man has gone before.”

On Style and Substance

Reputedly, one of the most important early influences on van Vogt was Whitehead’s Science and the Modern World. Whitehead, a mathematician, and
Bertrand Russell wrote an incomparable treatise on mathematics, *Principia Mathematica*. Intending to firmly establish the logical foundations of mathematical reasoning, Whitehead began to perceive the problem of incompleteness well ahead of Gödel. (5) In *Science and the Modern World*, Whitehead developed a philosophical interpretation of the emergence of the scientific world view, and with it the transformation of the modern world. He started with the empirical philosophy of Bacon and the experimental methods of Galileo, which substituted experimental measurement for the medieval Aristotelian “science” of classification and description (encased in dogma by the medieval church). Science progressed from data to generalization to the refinement of highly abstract mathematics. Coinciding with the Reformation, science played its own role in undermining the authority of the church. During the seventeenth and eighteenth centuries, the Enlightenment, by no means detached and objective in its aims, attempted to extend scientific reasoning to society and politics. Whitehead claimed that scientific method then began to fail as a guide for human progress. It failed for lack of philosophical coherence and for reliance upon brute material facts at the expense of the psychology of human experience. It failed by the narrow specialization of professional scientists and engineers — the focus that admittedly gives science its great power but robs it of a balanced view of the world.

Science and technology came to dominate the nineteenth century world coincidentally with the rise of social Darwinism, which gave rise to a culture of competition, of scarcity and of the brutal application of material power for political purposes, culminating just prior to Whitehead’s book, with the First World War. The world had steadily grown in complexity and degrees of abstraction and here Whitehead offered his theory of misplaced concreteness — a false-to-facts view of the world no longer congruent with life. Whitehead complained not only of the dog-eat-dog competitiveness but also of the loss of religious faith (and values), of intellect that had become infertile and art that was decadent (an early postmodernism).

Moving to a solution, of sorts, Whitehead observed that successful ecologies evolve out of mutual, organic interdependence; that organisms that destroy their environment destroy themselves, and that successful organisms modify their environment for their own benefit. Rapid change will continue to dominate the evolution of society. It causes instability and fear but the world, self-evolving, cannot be stopped. Whitehead observed that “the novel pace of progress requires a great force of direction if disasters are to be avoided,” and concluded (literally, the last line of the book) that the true leaders of the progress of civilization were not the great generals and kings but “a long line of men of thought
from Thales to the present day, men individually powerless, but ultimately the rulers of the world.”

Whitehead was optimistic about the human future. Oswald Spengler’s recently published *Decline of the West* was very pessimistic. These theories of the possible decline and fall of human civilizations greatly interested van Vogt. Toynbee, Sorokin, and others talked about the creative minority who unfolded the potential necessary to develop and maintain a civilization. Van Vogt had a tremendous idealistic faith in human progress that was well formed in his first story for Campbell that incorporated many of these elements.

Van Vogt called himself “Mr. System.” Indeed, he claimed that he was incapable of performing any job unless he had a system for it. Not yet out of his teens, he set out to learn a system of writing. Van Vogt used his system, which was relatively simple in design, with great success from the writing of his first story. He practiced the system meticulously his entire life, and he spoke about the method frequently towards the end of his life. Most of it he learned reading John Gallishaw’s works on fiction writing. Gallishaw reported that successful scenes consisted of no more than 800 words into which are embedded five specific elements, each scene having its own purpose and structure.

Gallishaw mandated the scene should have one of three approaches: imagery, suspense, or emotion. Van Vogt played the emotions. (6) He studied words for the effect of their sound. He liked words with “d” and “t,” strongly fricative sounds. He used names that fit the behavior of his characters: Gilbert Gosseyn was about “going-sane.” Jomey (“JC”) Cross, in *Slan*, was about the salvation of a new breed of humankind. Patricia Hardie was a hardy lady for sure. The careful and helpful Null-A psychologist was Dr. Kair. Finally, each and every sentence had to have a “hang-up.” Something had to grab the reader and evoke his or her participation. Something had to be added by them.

Van Vogt said it was impossible to read his stories quickly. The reader had to take the time to fill in the blanks and help make the story. If there were 10,000 sentences in a novel, every one of them had to have its hang-up. The most important sentence is, of course, the first one. That’s the sentence that needs a real hook. Van Vogt said he subscribed to all the science fiction magazines and read the first two paragraphs of every story. If the story didn’t have him by then he skipped it.

Van Vogt said he worked nearly every waking hour, typically 10 a.m. to 11 p.m., seven days a week. Breaks robbed him of energy. His work developed slowly; a novel could take two years. But he had no difficulty working on several projects at once. He simply focused on the 800-word scene before him, completing one after another. He constantly reworked and revised the story or novel until he felt it satisfied his criteria for a holistic piece — every part some-
how interrelated, even if in no one’s mind but his own. The result was a story with little apparent plot that made dramatic shifts every few pages. Campbell was both delighted and bewildered. He loved van Vogt’s stories but they defied his highly rational mind. Campbell liked to give explicit advice to his writers but he could not fathom the structure of van Vogt’s stories. Van Vogt, in some inscrutable, Korzybskian style was able to translate the flow of experience in his own silent realm and convey it in a way to evoke a strong and positive neuro-physiological response in his reader. In short, he accomplished exactly what he set out to do.

Like dreams, his stories are full of change and contradiction, bizarre, often “a strangeness that defies anticipation.”

If you want van Vogt in a nutshell, you can have the shell but not the nut. The method so far described provides merely structure, like a simple loom into which each sentence was threaded. That’s about as far as van Vogt’s method can be traced, for beyond this he worked at the unspeakable level. No small part of van Vogt’s style originates in his habit of using dreams to guide the development of his stories. He had such a great faith in the power of the unconscious that early in his career he began waking himself every 90 minutes to refresh his mind on the story he was writing — a practice that became part of his system. He found a lot of psychological research to support the process, both creatively and therapeutically. These dreams filled his writing with “fantastic images, symbols, figures, a constant sense of discovery and revelation,” which defy logical explanation. Like dreams, his stories are full of change and contradiction, bizarre, often “a strangeness that defies anticipation.” Van Vogt was not irrational or mystical, however. While devoting much time to introspection and “self auditing,” he spent his life trying to rationalize his fantasies. Much in the vein of Whitehead, he didn’t discount the subconscious but sought to integrate intuition with the conscious and rational. General semantics (especially regarding the unspeakable level of experience), hypnosis, and Dianetics played important roles in the development of his writing.

As a youth, between ages thirteen and twenty, van Vogt read 200 to 500 books per year, mostly fiction. He liked westerns, but read history, psychology, science, and many other subjects. He kept abreast of a host of scientific journals. He studied the background for every story in great detail. For him, it was not research, but rather familiarizing himself with “the countless details of the subject.” He let ideas submerge into his own subconscious and thus become his own. For The Violent Man, a story about the communist revolution in China
and the differences between the superior and the violent personality, he read 100 books on Red China alone. His Null-A books were the most thoroughly researched. He devised his own sub-branches of “systematic thought” in economics, psychology, education, physical fitness, politics, libertarianism, criminology, etc., that he then organized as a “combination of systems” which he learned to apply to both his own life and his stories. To him this was science in the Whiteheadian sense: an attempt to establish an orderly explanation of everything. Van Vogt investigated so many ideas that his close friend Forrest Ackerman dubbed him “the undisputed Idea Man of the Futuristic field.”

Science fiction and consciousness expansion, van Vogt said, lifted him out of a life as a government clerk. He believed in human evolution. He believed that superior individuals could be developed, and he sought a systematic means to re-educate and develop the capacity of high-IQ individuals. Whitehead and Korzybski profoundly influenced van Vogt’s worldview and humanistic idealism. So did L. Ron Hubbard, who with his theories of Dianetics did much to shape van Vogt’s understanding of human behavior. Hubbard was a prolific and well-liked writer. Van Vogt said Hubbard was “very brilliant,” and after meeting him in 1945, opined that “all men do not have pedestrian minds.” John Campbell also played a key role in the launch of Hubbard’s Dianetics. Hubbard, then living in Elizabeth, New Jersey, and Campbell were close. Like most of Campbell’s cadre, Hubbard read widely and joined the many intellectual circles that proliferated in New York City at the time. He developed a therapeutic system he called Dianetics and caught the attention of Campbell, Campbell’s wife, and her brother, a medical doctor, J.A. Winters. (7) In May 1950, Campbell published an article in *Astounding* on Dianetics by Hubbard to coincide with the release of Hubbard’s *Dianetics, The Modern Science of Mental Health*. The book became a bestseller and Dianetics groups began cropping up all over. Hubbard traveled the country and then the world to train these groups and eventually turned from science fiction writing to social entrepreneurship.

Dianetic techniques require no medical or psychological training, do not use interpretation or analysis, substitute a focus on a single incident rather than the free association of Freudian psychoanalysis, and produce immediate and lasting results in many people. Van Vogt had no initial interest but Hubbard needed someone on the West Coast to represent him. Van Vogt said Hubbard called him long distance “17 or 18” mornings in a row at 7 a.m. and talked for an hour. Hubbard wore down his resistance and van Vogt finally consented to play a minor administrative role. Hubbard immediately sent him a letter appointing him as his official representative. Before long, however, van Vogt became deeply interested in Dianetics. His wife, Mayne, suffered from chronic health problems, and after one Dianetics session one of her chronic complaints
disappeared. Van Vogt decided to leave writing and devote himself full-time to Dianetics. He had already written a book on hypnosis (8), which co-author Charles Edward Cooke used to train doctors and psychologists. Over the course of the next 12 years, van Vogt devoted himself to Dianetics and audited some 2,000 people. He called Dianetics “priceless” as his chief means of understanding human behavior, but van Vogt and Hubbard parted ways a few years later when Hubbard launched his Church of Scientology. Van Vogt had no interest in either mysticism or business, especially at the intense level that characterized Hubbard. Van Vogt formed his own Dianetics auditors association and practice, and after 1962 he turned back to science fiction writing. In a 1979 interview, he affirmed his faith in Dianetics and reported that he continued to hold the post of President of the Independent (i.e., non-Scientology) California Dianetics Auditors Association.

The Non-Aristotelian World of A.E. Van Vogt

Out of van Vogt’s writings came certain stylistic characteristics. Three central qualities in particular emerged: first, a technology-driven future; second, the prospect of human evolution; and third, the emergence of a truly holistic, systems-oriented philosophy. In the inherently amoral, competitive, fragmented, profoundly challenged mid-twentieth century, van Vogt sought a moral imperative. He wanted to know how the truly superior human being operates and how human society evolves. As Whitehead pointed out, this problem plumbs the depths of philosophy and the social sciences. The answer emerges time and again in the form of altruistic cooperation.

Van Vogt relished the human prospect. He and Campbell were close on this point: Campbell rallied his writers to the standard of human conquest over the paralyzing fears of the vast material universe, to set out and conquer it. But none of his writers, not even Heinlein with his own profound moral overtones, could match van Vogt’s almost militant optimism. They stayed on the material plane. Van Vogt pursued Whitehead’s post-materialistic (i.e., moral and idealistic) philosophy — a whole new value system. The superior man or woman not only knows to do the right thing, but also has a program for human conduct and advancement that pursues moral and purposeful ends essentially congruent with certain universal laws. These people are also incorruptible. Humanity moves forward through responsible, cooperative, and altruistic acts. The superior man and woman, by their very nature, are obligated to look out for the welfare of the less advanced. They reach back, if necessary, to help those lagging behind and to aid them in overcoming limitations and barriers and to widen their horizons.
Van Vogt’s characters invariably start their story with little but potential. They often start in search of identity. They begin in ignorance, suffer from amnesia, or barely escape with their lives from attacks by superior hostile forces. They are ordinary people who step out of ordinary backgrounds or are driven out by circumstances. On and on they go, often facing one defeat after another. What little reality they have disintegrates. The stories are full of underground hideouts, dark tunnels, and secret passages: labyrinths of the mind. The stories unfold in sudden shifts with little logic or reason — seemingly driven by van Vogt’s dreams. The characters have a few sudden flashes of intuitive insight, but more often they have a remarkable degree of self-control and an inherent self-confidence. They are willful if not yet purposeful. Increasingly, van Vogt pits single individuals against vast and repressive empires. Slowly and painfully, by trial and error, they learn. Then, suddenly and without sufficient evidence, they gain access to insight; they see brilliant patterns of relationships emerge, which motivates decisive action. They can be ruthless and murderous in the dispatch of mindless foes, at the same time they can be compassionate and respectful. Unlike many space opera writers, van Vogt ends many conflicts not with a great space battle but with a conversation between the protagonists who often find they are actually in complimentary, if conflicting, roles.

He said he did more research for the Null-A novels than any other and, towards the end of his life, he considered it his best and favorite writing.

A friend loaned van Vogt a copy of *Science and Sanity* in 1943. Van Vogt felt a deep attraction to Korzybski’s ideas and began an intensive two-year project of research and writing. He said he did more research for the Null-A novels than any other and, towards the end of his life, he considered it his best and favorite writing. In 1945, van Vogt serialized and then published as a book the first of four “general semantics” novels, *The World of Null-A*. (9) He published a sequel to the series in 1948, the year he joined the International Society of General Semantics, another novel, *The Players of Null-A*. (I also include *The Voyage of the Space Beagle*, published in 1950, which embodied many Korzybskian themes.) He completed the series in 1985 with *Null-A Three*.

To get the flavor of van Vogt’s writing, we should start with that first Campbell story, “Black Destroyer.” With the opening sentence we learn of a creature on the prowl and that it has a name. There are two hooks here: A creature with a name, Coeurl, and on the prowl for what? Food, of course. Coeurl has systematically and intelligently hunted out all the food in a vast territory
and has just returned to his starting point, realizing his doom. Just at that mo-
ment of despair, a spaceship descends from the skies. Coeurl goes to investi-
gate and finds a new and abundant source of food: the men from the stars. At
this point his mental powers begin to counterbalance his vast ego, his hunger,
and his tremendous array of powers. These powers include not only great physical
strength but also the ability to manipulate energy and matter. Coeurl knows that
he will find more food where this came from and his ancient memories (virtu-
ally immortal, he survived the ruin of the civilization of his planet) begin to
awaken. He presents himself to the crew and allows them to take him “cap-
tive.” Biding his time, Coeurl awaits the opportunity to take some food. He
tracks one of the men and kills him in such an overwhelming fashion that van
Vogt leaves no doubt as to Coeurl’s power. Hunger satisfied, he works out his
plan to capture the ship, find some of his own race, and go to the stars where an
endless supply of food awaits.

A major leitmotif of van Vogt’s begins to develop at this point. Coeurl, for
all his great powers, lived in a civilization that entered its winter phase and
utterly failed, a la Spengler. Coeurl exhibits the characteristics of low cunning
that typify the citizens of such civilizations, a peasant mentality, an animalistic
hunger, and ego-driven personality. The humans, who have broken the cycle of
history, quickly grasp Coeurl’s personality. They have the advantage of coop-
eration that gives them the one real weapon they have to overcome Coeurl’s
awesome but irrationally motivated powers. The outcome was predictable, and
the story well worth reading.

Van Vogt combined “Black Destroyer” with two other creature stories into
a “fix up” novel in 1950, The Voyage of the Space Beagle. In that book Coeurl
gains new powers (a synthesis of the powers of the creatures in all three sto-
ries). The human side of the story also becomes more complex and dramatic. In
this novel van Vogt introduces the science of nexialism, a general semantics
spin-off. He defined nexialism as “the science of joining in an orderly fashion
the knowledge of one field of learning with that of other fields. It provides
techniques for speeding up the processes of absorbing knowledge and of using
effectively what has been learned.” With that definition, the nexialist general-
ist, Elliott Grosvenor, invites the learned scientific members of the spaceship
Beagle’s crew to a lecture. They look down their noses at this upstart and un-
proven field. The plot reads well, provides more intricate twists, and has the
expected outcome. Nexialism enjoys a considerable web presence today.

The World of Null-A (1945) opens with a triple hook, in the form of an
announcement: “The occupants of each floor of the hotel must as usual during
the games form their own protective groups.” The next lines alone would serve
as an opening for most writers and perfectly define van Vogt’s style: “Gosseyn
stared somberly out of the curving corner window of his hotel room. From its thirty-story vantage point, he could see the city of the Machine spread out below him.” So we have a somber individual with a suggestive name (go-sane), in a high-rise hotel, during some sort of game, which requires people to form their own protective group. He looks out over the city of the “Machine.” So what the heck is going on? Gosseyn, called to meet the other players on his floor, the self-protective group, learns, from a lie detector, that he is not who he remembers himself to be. Summarily evicted from the hotel, he finds himself out on the streets during the policeless month — the month of the games — alone in a hostile world. He runs into a woman, Patricia Hardie, also alone on the streets, or so she says. They seek refuge in a park.

We learn that Gosseyn packs a gun, but he has other defenses as well. Gosseyn begins to describe the non-Aristotelian philosophy to his companion. For example, the non-Aristotelian training, which he has pursued most of his life, gives him tremendous strength, speed, stamina, and agility. He tells Patricia Hardie that this philosophy offers a “technique of automatic extensional thinking which had become the dynamic philosophy of the human race.” “The map is not the territory,” we are informed, and the word is not the thing it represents. We also learn about cortical-thalamic integration — a method for integrating the human and animal parts of the brain: quite a lot of story for the first two chapters.

In short, Gosseyn finds himself out in the cold, sleeping in the park, avoiding roving gangs, anything but helpless, and the protector of a lovely lady. We then meet the Machine, a vast computer that runs the games in which the best and brightest of earth compete for jobs and for the coveted immigration to the colony on Venus. (10) The Machine interacts with Gosseyn verbally. It converses in an extremely intelligent manner (and it dialogues with 25,000 very smart people simultaneously). Given that he wrote at the time of the very first computers, van Vogt makes a tremendous leap in imagination in a line that today, sixty years later, we consider a highly plausible but still distant goal. Ironically, Gosseyn can see the glowing vacuum tubes of the Machine. (11)

In Gosseyn’s world, IGS may rule the earth, philosophically, but the current political rulers are either not at all or only poorly trained in the non-Aristotelian methods. The President is merely a petty politician and criminally inclined. Obviously not a job coveted by the Earth’s best and brightest. His daughter Patricia was the woman Gosseyn “accidentally” encountered. Both father and daughter are in some way involved in a conspiracy to destroy the IGS, the Machine and the entire non-Aristotelian community. But the plot was not hatched on Earth. A great galactic emperor sees it merely as a means to increase his power, a tiny ploy in a much greater game. Gosseyn bounces from setback to
setback, gets “killed” and finds he has multiple bodies which share the same mind and memories, learns that he has a highly developed part of his brain that potentially gives him control over matter and energy if he can learn to harness it, discovers hidden allies, and learns how unarmed non-Aristotelians on Venus wage self-sacrificing war against the millions of soldiers of the galactic empire. Gosseyn and the IGS ultimately triumph. Their powers prove greatly superior even to the overwhelming might of a vast empire of uncounted billions. The story ends almost as it begins. There are dangling plot lines for any number of sequels.

Idea or Art

Campbell believed in hard-science fiction; he had little love for fantasy. The extrapolations of his writers sound as much like futurism as fiction. Many of those predictions were totally unbelievable in those days to the average reader: Space flight, intelligent computers, controlled atomic energy, expanded human consciousness, etc. But for the well-informed reader, they were plausible ideas. Even Gosseyn’s augmented brain and the potential for paranormal powers were within the grasp of an informed imagination. Gosseyn’s mental teleportation did little more than Captain Kirk’s transporters; the machinery for it was just built into Gosseyn’s brain case.

There are any number of hard-science fiction writers in the market today, many of whom are scientists by day. Not long ago, I attended a university lecture by one of them, Gregory Benford, and found the learned audience as interested in his science fiction as they were in the Solar Sail, the space experiment he came to talk about. (12) Reading a computer trade journal recently on an extrapolation of Moore’s Law (doubling rates of computer power) I followed two links to reputedly “seminal” papers, both by computer scientists. One, by Vernor Vinji, a scientist and science fiction writer, dated 1993, predicted that within 30 years computers would achieve the same computation power as the human brain. The current top supercomputers have about five percent human brain capacity (using a calculation close to the one Korzybski used to estimate human brain potential based on neurons and synaptic connections). The other, by Ray Kurzweil, a highly successful IT entrepreneur who collaborates with Vinji, predicted that during the next few decades (by 2025 to 2035 or so) five things will transpire: First, the size of a computer equal in computational power to the human brain will be about a cubic inch. Second, the cost will come down to about $1,000. Third, nanotechnology used to map human brain processes will allow direct communication with external computers (this represents a symbiotic interaction between brain and computer, such minds functioning in a
totally virtual environment). Fourth, the number and total capacity of these artificial brains will equal that of the entire population of the earth. Finally, human evolution will thus be driven to a “singularity,” which Vinji was the first to define as a point where the acceleration of change completely overwhelms our ability to predict the immediate consequences. In other words, human reality as we know it will completely collapse and a new, machine driven, virtual reality will emerge.

Given a computer with human computational capacity, will it attain human-like intelligence, as seemingly happened with van Vogt’s Games Machine, the device that could simultaneously interact conversationally with 25,000 contestants, the cream of the human crop? Or does the device simply pass the Turing Test which establishes as a threshold, not a true self aware intelligence, but the ability to mimic human behavior to the point that a person interacting with it via phone or internet could not determine that it was artificial? I find another point more to the issue, that of the impact of highly augmented human intelligence. Van Vogt wrote a great deal about the evil that dwells in the minds of human beings and other beings with similar mental capacity. Korzybski, I have no doubt, would certainly acknowledge that a highly enhanced maladjusted brain will continue to behave in a highly maladjusted and extremely dangerous fashion. Our singularity could thus approximate one already described in Forbidden Planet. In that book and movie, the great Krell race amplified not only their conscious minds but also the “monsters of the id” that killed them off. Less advanced humans were no less afflicted when they joined their minds to the Krell amplifier.

Van Vogt and Korzybski both devoted much of their lives to the problems of the modern age.

I find the apocalyptic imagination repelling. But I don’t deny the potential peril of this hard-driven age. We can be certain, from the facts of history and personal experience, that progress has two edges. The realities we face are change, adjusting to change, and keeping our minds sufficiently clear to avoid being overwhelmed in the process. Van Vogt and Korzybski both devoted much of their lives to the problems of the modern age. A commitment to general semantics strongly implies that we believe it will make our own lives better and that through that achievement we may, in turn, make the lives of others better. Korzybski had a vision of a positive and progressive human future. Now, more than a half-century after his death, we find a small but dynamic group of bright people who still share that vision. We have been carried by the imagination and
vision of those he taught and those they taught. How do we propagate his system? I believe the problem before us consists of how to attract and train members to carry on this work for another generation. Perhaps we can make our presence felt through artistic expression: literature, web sites, the visual arts, and perhaps even fiction. How do we achieve such expression? Does it require great genius? I think not. An important lesson in van Vogt’s life comes out of the fact that he was an ordinary guy who did something extraordinary: He developed a precise and workable personal system and applied it steadfastly for decades. He did so with a purpose and will. He did it initially to earn a living. And he did it because it was the right thing to do. The doing of it gave him endless joy. I believe he sets a worthy example.

A.E. van Vogt died on January 26, 2000, aged 88 years. He had suffered from Alzheimer’s for a decade.

NOTES

1. In *Slan* (1940), van Vogt wrote about a supercomputer in a Martian census bureau which he described as a “thinking” machine. Its files held immense volumes of cross-tabulated information. One science fiction historian noted that at the time Heinlein and others conceived of computers as nothing more than ballistic calculators used to plot space ship trajectories. The ballistic computers then in use were developed largely by Vaneaver Bush. They were used to plot artillery ballistics during World War II. They were complex and elegant, purely electromechanical devices. In 1945, Bush conceived an information system he called Memex, a desk-sized device full of microfilms holding the world’s information in which topics could be cross-indexed one to another and the indices stored for further use and development. This, of course, is what we call today “hypertext.” In 1945, the computer was a massive system of vacuum tubes (18,000 of them) and there were only a handful in existence. Van Vogt was thus far ahead of the game in conceiving much of what became reality with 21st century computers, the internet, and search engines. The *Slan* hero also developed controlled atomic energy.
2. A very high percentage of the colonial administrators were, in fact, Scots educated in Scottish universities. Scottish engineers also took a lead in the British industrial revolution.

3. This story, written by John Campbell, “Who Goes There?” was several times made into a movie, *The Thing From Outer Space* (1951), *The Thing* (1982), and a 2005 update in the works.

4. After the Manhattan Project began, the FBI came to inquire how they had gotten their hands on top secrets.

5. Korzybski’s close friend, Cassius J. Keyser, had a student, Emil Post, who anticipated Gödel’s incompleteness theorem but did not publish. Not surprisingly, we find the idea of incompleteness in Korzybski’s writings before Gödel got into print.

6. As subsequent developments in his career indicate, he had a tremendous interest in human emotion and reaction.

7. Joseph Winters used general semantics in his medical practice. He wrote the forward to Hubbard’s book and later wrote a critique of Dianetics and a book on the psychosomatic aspects of medicine.

8. Published in 1956 as *The Hypnotism Handbook*.

10. In van Vogt’s book, Venus was first visited in 2018, just as the Institute of General Semantics assumed control of Earth’s government. The IGS decided to reserve Venus for the very best of the games competitors. The date of the story is 2560. IGS ruled the earth for over 500 years. The population of Venus, a cloudy, temperate world covered by giant trees, stands at 240 million.

11. Vacuum tube technology began to fade in the 1960s, replaced by semiconductors, first single transistors a hundredth the size of the tube and using only a tiny fraction of its energy, and then the large scale integrated circuit which now packs tens of millions of transistors onto a chip a quarter of an inch square.

12. That mission failed June 21, 2005 when the booster rocket malfunctioned.